Metal-0x0 Photo-oxidants: Photochemical Oxidation of Hydrocarbons by trans-Dioxo complexes of Ruthenium(vi) and Osmium(vi)

Vivian Wing-Wah Yam, Chi-Ming Che,* and Wai-Tong Tang

Department of Chemistry, Univeristy of Hong Kong, Pokfulam Road, Hong Kong

The synthesis of *trans*-[Ru^vl(L)(O)₂]Y₂ (Y = PF₆ or ClO₄) and *trans*-[Ru^{IV}(L)(NCO)(O)]ClO₄ {L = *meso*-1,2,6,10,11-pentamethyl-2,6,10-triaza[11](2,6)pyridinophane} is described; irradiation of *trans*-[Ru^v'(L)(O)₂]²⁺ and $[Os^v(CN)₄(O)₂]²⁻$ ($\lambda > 330$ nm) in presence of organic substrates yielded the corresponding oxidized organic products indicating that the $(d_{xy})^1(d_x*)^1$ excited states of Ru^{V1} - and Os^{VI}-oxo complexes are reactive towards epoxidation of alkenes and to oxidation of C-H bonds.

Recently there has been much interest in the photochemical oxidation of hydrocarbons by transition metal complexes. $1-5$ Spectroscopic studies of *trans*-dioxorhenium(v) complexes¹ suggested the possibility of developing powerful metal-oxo photo-oxidants through light excitation of metal-oxo complexes.^{1,5,6} In support of this hypothesis, we describe here results illustrating the reactivity of excited states of ruthenium(v1) and osmium(v1) 0x0 complexes in epoxidation of alkenes and oxidation of C-H bonds.

The preparation and u.v.-visible spectral data of ruthenium complexes with the ligand L7 are summarized in Scheme 1. The structures of *trans-*[$Ru^{III}(L)Cl₂|ClO₄$ and *trans-* $[Ru^{\text{IV}}(L)(NCO)(O)]ClO₄$ have been established by X-ray crystallography.⁸ trans- $[Ru^{VI}(L)(O)_2]Y_2$ (Y = PF₆ or ClO₄) complexes were isolated as diamagnetic yellow solids with v_{as} (Ru=O) 850 cm-1. These complexes are more powerful oxidants than trans-[Ru^{VI}(tmc)O₂]²⁺ (tmc = 1,4,8,11-tetra**methyl-l,4,8,1l-tetra-azacyclotetradecane)** *[Ei(* Ruv1/RuIv) 0.76 V *vs.* standard calomel electrode (S.C.E.) at pH 1.1 $|\dagger$ and more stable to light. \ddagger The electronic spectra of *trans-*

⁺ Satisfactory elemental analyses have been obtained for *trans*-
{Ru^{VI}(L)(O)₂][ClO₄]₂. The electrochemistry of *trans-* $[Ru^{V1}(L)(O)₂][ClO₄]$ ₂. $[\text{Ru}^{\text{VI}}(L)(O)_2]^2$ ⁺ is very similar to that of *trans*- $[\text{Ru}^{\text{VI}}(\text{tmc})(O)_2]^2$ ⁺ (ref. $6a$); the E_i value refers to the electrode reaction. *trans-* $[Ru^{VI}(L)(O)₂]^{2+} + 2H⁺ + 2e⁻ \rightarrow trans-[Ru^{IV}(L)(O)(OH₂)]^{2+}$ at pH 1.1.

³ The photochemical reactions were carried out with a high pressure 350 **W** short arc mercury lamp equipped with filters. Irradiation of *trans*- $[Ru^{V1}(L)(O)_2]^2$ ⁺ in 0.1 M-CF₃CO₂H at 350–450 nm for 1.5 h resulted in no optical spectral changes of the solution. Howcver, *trans*-[Ru^{VI}(tmc)(O)₂]²⁺ rapidly decomposed (within minutes) upon photolysis ($\lambda > 350$ nm) in aqueous solution.

^a The acetonitrile solutions were degassed with argon for 15 min before irradiation. ^b The products were identified by g.c.–mass spectrometry, except for trans-stilbene oxide and dibenzyl sulphoxide which were identified by ¹H n.m.r. spectroscopy (90 MHz). Based on the amount of Ru^{VI} complex used.

Table 2. Photo-oxidation of organic substrates by $[Ph_4As]_2$ $[Os^{VI}(CN)₄(O)₂]$ (30—40 mg) in acetonitrile^a (3 ml) at 25[°]C (irradiation time. 4.S h).

^a The acetonitrile solutions were degassed with argon for 15 min before irradiation. $\frac{b}{c}$ Except *trans*-stilbene epoxide, all organic products were identified by g.c.-mass spectrometry. ^c Based on amount of Os^{VI} complex used.

 $[Ru^{VI}(L)(O)₂]$ ²⁺ and the previously prepared osmium complex^{5b} $[Ph_4As]_2$ $[Os^{V1}(CN)₄(O)₂]$ in MeCN display vibronic structured absorption bands (Ru^{VI} 400, Os^{VI5b} 320 and 370 transition.^{1.5.6} While the Ru^{VI} complex is non-emissive in transition.^{1.5.6} While the Ru^{VI} complex is non-emissive in solution, the $(d_{xy})^1(d_{\pi}^*)^1$ triplet of Os^{V1} is a powerful oxidant with a lifetime of 0.4 μ s in MeCN at 25 °C.^{5b}

At room temperature, irradiation (>350 nm)‡ of *trans*nm} with organic substrates in degassed MeCN yielded the corresponding oxidized products, identified by g.c.-mass spectrometry and ¹H n.m.r. spectroscopy (Tables 1 and 2). Under similar conditions thermal reactions were negligible. **^B** At 10 °C, photo-epoxidation of norbornene by these metal-0x0 complexes to give norbornene oxide also occurred (40-50% yield) after 3-4 h irradiation. After all the photoreactions, the electronic spectrum of the ruthenium product ($\lambda_{\text{max}} \sim 340 \text{ nm}$) closely matched that of *trans-* $[Ru^{II}(L)(MeCN)_2]^{2+}$. Assuming this is the photo-product, the $[Ru^{VI}(L)(O)_2][PF_6]_2$ {or $[Ph_4As]_2[Os^{VI}(CN)_4(O)_2], >330$

Scheme 1. *Reagents and conditions: i, EtOH, reflux, 24 h; ii, excess of* AgSO₂C_eH_eM_{e-p}, H₂O₂ \sim 70 °C, then 30% H₂O₂; iii, as for ii, but with H_2O_2 + NaNCO; iv, reduction at 0.60 V *vs.* S.C.E.; v, reduction at 0.25 V *vs.* S.C.E.

Electronic spectra, in 0.1 M CF₃CO₂H, except for (C) in MeCN = λ_{max} /nm (ε) (A), 385 (3170) and 320 (2060); (B) 402 (630), 320 (2560), and 265 (7900); (C) 302 (5170) and 268 (4130); (D) 292 (2310), 261 (3970) , and $230(4380)$; (E), $335(3020)$ and $242(6310)$.

molar ratios of Ru^{II} product to the starting compound *trans*-[Ru^{VI}(L)(O)₂][PF₆]₂ are 0.44, 0.28, and 0.41 for the photoreactions with propan-2-01, norbornene, and cyclohexene, respectively. In each of its photoreactions, $[Ph_4As]_2[Os^{VI}(CN)₄(O)_2]$ was transformed to a species having no significant absorption at wavelengths greater than 320 nm. As *trans*- $\left[\text{Ru}^{\text{IV}}(L)(\text{NCO})(O)\right]$ ⁺ was found to be inert both thermally and photochemically, to the organic substrates it is unlikely that the Ru-L-0x0 complex is the active intermediate in the photoreactions of *trans*- $[\text{Ru}^{\text{VI}}(L)(O)_2][\text{PF}_6]_2$.

Excitation of trans- $[Ru^{VI}(L)(O)_2]^{2+}$ or $[OS^{VI}(\widetilde{CN})_4(O)_2]^{2-}$ in the 300-400 nm region produces the $(d_{xy})^1(d_{\pi}^*)^1$ excited state which has a weaker M-0 band than when in the ground state and hence is a better oxo-transfer reagent $[v_{Ru-O}: A_{1g}]$

[§] Slow thermal oxidation of propan-2-ol and cyclohexene by trans- $[Ru^{VI}(L)(O)₂][ClO₄]$ has been observed. Reactions of trans- $[Ru^{V}I(L)(O)₂][ClO₄]₂$ with norbornene and stilbene at 50 °C for 20 h yielded no **exo-2,3-epoxy-norbornane** nor trans-stilbene oxide, respectively. $[Ph_4As]_2[Os^{VI}(CN)₄(O)_2]$ has been found to be inert towards oxidation of alcohols and cyclohexene and epoxidation of alkenes.

850, 3E_g 600–650 cm⁻¹; $v_{Os=O}$: ${}^1A_{1g}$ ~870, 3E_g 700 cm⁻¹].^{5b} Experimentally, photochemical, but not thermal, epoxidation of alkenes by these metal complexes was observed§ as would be predicted. The excited state of $[Os^{VI}(CN)₄(O)₂]²⁻$, is even capable of oxidizing unactivated C-H bonds in cyclohexane, illustrating the potential uses of d^2 -trans-dioxo metal complexes of Ru and 0s in photo-oxidation of hydrocarbons.

We acknowledge financial support from the University of Hong Kong and the Croucher Foundation. V. W.-W. Y is a Croucher Foundation Studentship and Li Po Chun Scholarship holder.

Received, 16th *July* 1987; *Corn. 1036*

References

1 J. R. WinklerandH. B. Gray,]. *Am. Chem. SOC.,* 1983,105,1373; Inorg. *Chem.,* 1985, 24, 346.

7 The M-0 stretching frequencies in the excited states were estimated from the vibrational spacing in the $(d_{xy})^2 \rightarrow (d_{xy})^1(d_{\pi}^*)^1$ transition. See also refs. 1 and 5b.

- 2 C. L. Hill and D. A. Boushard, *J. Am. Chem. Soc.,* 1985,107,5148; K. S. Suslick, **F.** V. Acholla, and B. R. Cook, *ibid.,* 1987,109,2818; L.-C. Yuan, T. S. Calderwood, and T. C. Bruice, *ibid.,* 1985, **107.** 8273.
- 3 C. Ercolani, M. Gardini, G. Pennesi, and G. Rossi, *J. Chem. SOC., Chem. Commun.,* 1983, 549; P. Bergamini, S. Sostero, 0. Traverso, P. Deplano, and L. J. Wilson, *1. Chem. SOC.,* Dalton Trans., 1986, 2311.
- 4 W. A. Herrmann, U. Kiisthardt, A. Schafer, and E. Herdtweck, *Angew. Chem., Int. Ed. Engl.,* 1986,25,817; W. A. Herrmann, U. Kusthardt, M. L. Ziegler, and T. Zahn, *ibid.,* 1985,24,860; W. A. Herrmann, R. Serrano, and H. Bock, *ibid.,* 1984, 23, 383.
- *5* (a) C. M. Che and W. K. Cheng, *J. Am. Chem. SOC.,* 1986, **108,** 4644; (b) C. M. Che, V. W. W. Yam, K. C. Cho, and H. B. Gray, *J. Chem. SOC., Chem. Commun.,* 1987, 948.
- 6 C. M. Che, K. Y. Wong, and C. K. Poon, *Inorg. Chem.,* 1985,24, 1797; C. M. Che. K. Y. Wong, W. H. Leung, and C. K. Poon, *ibid.,* 1986, 24, 345.
- 7 C. M. Che, **S.** T. Mak, andT. C. W. Mak, *Inorg. Chem.,* 1986,25, 4705.
- 8 The X-ray structures of trans- $\left[\text{Ru}^{\text{III}}(L)\text{Cl}_2\right]\text{ClO}_4$ and trans- $\left[\text{Ru}^{\text{IV}}\right]$ (L)O(NCO)]ClO, were determined at Peking and Hong Kong Universities, respectively, C. M. Che, C. K. Poon, and T. F. Lai, unpublished results.